تشخیص و طبقه بندی آریتمی های قلبی توسط شبکه عصبی

thesis
abstract

چکیده ندارد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

طراحی یک سیستم هوشمند مبتنی بر شبکه های عصبی و ویولت برای تشخیص آریتمی های قلبی

In this paper, Automatic electrocardiogram (ECG) arrhythmias classification is essential to timely diagnosis of dangerous electromechanical behaviors and conditions of the heart. In this paper, a new method for ECG arrhythmias classification using wavelet transform (WT) and neural networks (NN) is proposed. Here, we have used a discrete wavelet transform (DWT) for processing ECG recordings, and...

full text

طبقه بندی و تشخیص هوشمند آریتمی های سیگنالهای قلبی با استفاده از تبدیل موجک و شبکه عصبی مصنوعی

تشخیص آریتمی های قلبی سیگنال الکترودیاگرام (ecg ) به دلیل تشخیص بهنگام شرایط خطرناک قلب از اهمیت زیادی برخوردار است. آنالیز دستی برای تشخیص آریتمی های قلبی زمان قابل توجهی می طلبد. به علاوه آنالیز دستی همواره مستعد خطا می باشد. به همین دلیل در طی دو دهه ی اخیر ، تحقیقات قابل ملاحظه ای در زمینه ی تشخیص اتوماتیک آریتمی های قلبی انجام شده است. روش هایی که تا کنون ارائه شده است نسبت به یکدیگر در چگ...

15 صفحه اول

طراحی یک سیستم هوشمند مبتنی بر شبکه های عصبی و ویولت برای تشخیص آریتمی های قلبی

در این مقاله، یک روش جدید برای طبقه­بندی آریتمی­های قلبی بر مبنای تبدیل ویولت و شبکه­های عصبی ارائه شده است. از تبدیل ویولت گسسته (dwt) جهت پردازش رکوردهای ecg. و استخراج ویژگی­های زمان – فرکانس استفاده می­شود. نتیجه­ی بدست آمده به عنوان بردار ورودی برای آموزش و تست یک شبکه­ی عصبی مورد استفاده قرار می­گیرد. هر چند که در سال­های اخیر، الگوریتم­های متنوعی برای تشخیص آریتمی­های قلبی پیشنهاد شده­ان...

full text

طبقه بندی آریتمی های قلبی با استفاده از تبدیل والش

بیماری های قلبی بنا بر آمارهای سازمان جهانی بهداشت شایعترین علت فوت را در میان سایر بیماری ها به خود اختصاص می دهند. استفاده از الکتروکاردیوگرام (electrocardiogram:ecg) به دلیل اینکه ثبت آن آسان، کم هزینه و در عین حال ثمر بخش می باشد، برای تشخیص بیماری های قلبی کاربرد وسیع و قابل توجهی دارد.برای کاستن از اشتباهات پزشکان و کمک به آنها، می توان از روشهای هوشمند در تشخیص این بیماری ها استفاده نمود...

15 صفحه اول

تشخیص آریتمی های قلبی به کمک شبکه های عصبی با بکارگیری ویژگی های آشوبی سیگنال نرخ تغییرات قلبی و تکنیک تحلیل تمایزی تعمیم یافته

در این مقاله یک الگوریتم جدید ومؤثر جهت طبقه بندی آریتمی های مهم قلبی با استفاده از سیگنال تغییرات ضربان قلب hrv که دارای مشخصه های آشوبگونه بهتری نسبت به ecg ست پیشنهاد شده است. در مرحله استخراج ویژگی، علاوه بر ویژگی های متداول خطی زمانی و فرکانسی، ویژگی های غیرخطی (آشوبگون) نیز بررسی شده اند. برای تسهیل در تعلیم و افزایش دقت طبقه بندی کننده، از دو تکنیک استفاده شده است: الف) تعداد ویژگی های ا...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023